A generalisation of Jury's conjecture to arbitrary dimensions and its proof
نویسنده
چکیده
In 1986 E. I. Jury conjectured by analogy to the theory of digital filters that a two-dimensional analog filter is BIBO stable if its transfer function is of the form H = 1/P, where P is a very strict Hurwitz polynomial (VSHP). In this article we prove a generalisation of Jury’s conjecture to r -dimensional analog filters (r > 2) with proper transfer function H = Q/P, where the denominator P is a robustly stable polynomial, i.e., a strict Hurwitz polynomial which retains this property under small variations of its coefficients. In the bivariate case these polynomials are the VSHPs.
منابع مشابه
ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملMultidimensional BIBO stability and Jury's conjecture
Twenty years ago E. I. Jury conjectured by analogy to the case of digital filters that a two-dimensional analog filter is BIBO stable if its transfer function has the form H = 1/P where P is a very strict Hurwitz polynomial (VSHP). In more detail he conjectured that the impulse response of the filter is an absolutely integrable function. However, he did not specify the exact equations of these ...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- MCSS
دوره 20 شماره
صفحات -
تاریخ انتشار 2008